
Lawrence Livermore
National Laboratory

Lawrence Livermore
National Laboratory

Interfacing Chapel with traditional HPC
programming languages1

Adrian Prantl, Tom Epperly, Shams Imam, Vivek Sarkar

Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory

Center for Applied Scientific Computing

!"#$%&'()*"+,"-.$."/)0(-(&'12
!(,$(+3(')45)6787

Tom Epperly, Dietmar Ebner, Tamara Dahlgren,
Adrian Prantl, Chris White & Lorin Hochstein (ISI)

LLNL-PRES-453773

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Performance Measures x.x, x.x, and x.x

October 17, 2011
Fifth Conference on Partitioned Global Address Space Programing Models (PGAS 2011)

1
This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-505696
Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Interoperability with other programming languages. . .

is not optional

essential for the acceptance of a new language

Realistically, nobody will rewrite their entire multi-million line
codebase in the language du jour.

BRAID

a tool that provides interoperability for PGAS languages

áChapel first language to be supported

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Interoperability with other programming languages. . .

is not optional

essential for the acceptance of a new language

Realistically, nobody will rewrite their entire multi-million line
codebase in the language du jour.

BRAID

a tool that provides interoperability for PGAS languages

áChapel first language to be supported

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Related work

BABEL

Fortran

FORTRAN

77

Fortran
90/95

Fortran
2003/2008

Java

C

C++Python

XML

Babel

LLNL’s language
interoperability toolkit for
high-performance computing

Designed for fast in-process
communication

Handles generation of all
glue-code

Features multi-dim. arrays,
OOP, RMI, . . .

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

BRAID connects Babel with PGAS languages

BABEL

Fortran

FORTRAN

77

Fortran
90/95

Fortran
2003/2008

Java

BRAID

Chapel

UPC
[planned]

X10
[planned]

CC++

Python

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Design goals

be minimally invasive
minimal changes to the Chapel compiler
user shouldn’t have to write special code

play well with the Chapel runtime
expected behavior of programs remains unchanged
support distributed data types

achieve maximum performance
avoid copying of arguments (when possible)
introduce minimal overhead

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

How does it work

Programming-language-neutral interface specification

Scientific Interface Definition Language (SIDL)

SIDL supporting

fundamental data types

object-oriented programming (user-defined types)

interface inheritance

exception handling

dynamic multi-dimensional arrays

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Using Chapel with BRAID — I

first, define the interface in SIDL

Example

import hplsupport;
package hpcc version 1.0 {

class ParallelTranspose {
// C[i,j] = A[j,i] + beta * C[i,j]
static void ptransCompute(
in hplsupport.Array2dDouble a,
in hplsupport.Array2dDouble c,
in double beta,
in int i,
in int j);

}
}

no data members are defined in the SIDL file

all methods are public and virtual methods can be defined
to be final or static

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Using Chapel with BRAID — II

next, use the Babel compiler to generate the server
(callee) glue code:
~/cxxLib> babel --server=cxx hpcc.sidl

generates code for skeleton and Intermediate Object
Representation (IOR)
generates empty blocks expecting user code

user fills in empty blocks as implementation code

user compiles code into shared libraries

Babel provides support for generating makefiles

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Using Chapel with BRAID — III

next, use the BRAID compiler to generate the client (caller)
glue code:
~/chplClient> braid --client=chapel hpcc.sidl

generates code for stub and IOR
user code uses the stub to make method calls
user code unaware of implementation
link to server code and SIDL runtime library during
compilation and run the executable

Babel/BRAID bindings take care of interoperability!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Control flow for crossing the language boundary

convert arguments
native Ù IOR

call via EPV

convert return value
IOR Ù native

convert arguments
IOR Ù native

call native
implementation

convert return value
native Ù IOR

~/chplClient> [Stub / Client] ~/cxxLib> [Skeleton / Server]

IOR intermediate object representation

EPV . entry point vector (vtable)

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Chapel as client — challenges

convert Chapel data types to the IOR

add support for

fundamental (primitive) types

local arrays

distributed arrays

object-oriented programming

exception handling

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Local Arrays

SIDL arrays represent rectangular regions

normal SIDL arrays

general interface for arrays

can be used as parameters/return types

row-major or column-major order

support arbitrary strides

å access via interface

raw arrays (r-arrays)

not as return type or out args

must be contiguous in memory with column-major order

å presented as native array type
Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Local Arrays: Raw Array Example

Example

SIDL File (interface of external function)

class ArrayOps {
static void matrixMultiply(in rarray<int,2> aArr(n,m),
in rarray<int,2> bArr(m,o), inout rarray<int,2> res(n,o),
in int n, in int m, in int o);

}

User writes Chapel code:

var sidl_ex: BaseException = nil;
var n = 3, m = 3, o = 2;
var a: [0.. #n, 0.. #m] int(32); // a 2D Chapel local array
var b: [0.. #m, 0.. #o] int(32);
var x: [0.. #n, 0.. #o] int(32);
// initialize the input matrices
[(i) in [0..8]] a[i / m, i % m] = i;
[(i) in [0..5]] b[i / o, i % o] = i;
// call the implementation of matrix multiply
ArrayOps_static.matrixMultiply(a, b, x, n, m, o, sidl_ex);

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Local Arrays cont’d.

user can use any Chapel rectangular array as raw array

å includes support for distributed arrays!

BRAID client code automatically

converts input arrays to required SIDL type

copying involved when input arrays are
1 not contiguous (e.g. distributed)
2 not in column-major order for raw-arrays

custom Chapel library extensions for column-major
ordered arrays and borrowed arrays for extra speed

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Local Arrays cont’d.

user can use any Chapel rectangular array as raw array

å includes support for distributed arrays!

BRAID client code automatically

converts input arrays to required SIDL type

copying involved when input arrays are
1 not contiguous (e.g. distributed)
2 not in column-major order for raw-arrays

custom Chapel library extensions for column-major
ordered arrays and borrowed arrays for extra speed

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Distributed Arrays

Copying everything is too inefficient?

Custom type: SIDL.DistributedArray

no contiguous or ordering requirements

use Chapel runtime to access elements, server language
(C, Java, etc.) unaware of communication

minimal overhead, data transferred on access!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Distributed Arrays

Copying everything is too inefficient?

Custom type: SIDL.DistributedArray

no contiguous or ordering requirements

use Chapel runtime to access elements, server language
(C, Java, etc.) unaware of communication

minimal overhead, data transferred on access!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Object-oriented programming — I

SIDL supports packages, abstract classes, static and virtual
methods
Chapel OOP support still in flux

cannot inherit from classes with custom constructors

BRAID support for packages and static methods

packages mapped to Chapel modules

multiple Chapel classes can reside in a single module

static methods mapped to additional Chapel modules

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Object-oriented programming — II

Chapel classes allocate IOR via calls to SIDL runtime

reference counting used to keep track of references to this
newly allocated object

Chapel class destructors decrement reference count to the
IOR object

Chapel types delegate calls to IOR

virtual function calls are handled by SIDL runtime

type-casting supported by explicit cast calls

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Benchmark

Calling a function that copies n arguments

12 4 6 8 10 12 14 16 18 20 22 24

102

103

104

105

n, number of in/out arguments (total = 2n)

in
st

ru
ct

io
n

co
u
n
t

copy bool, bi = ai

Python

Java

F03

F90

F77

C++

C

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Benchmark

Calling a function that copies n arguments

12 4 6 8 10 12 14 16 18 20 22 24

102

103

104

105

n, number of in/out arguments (total = 2n)

in
st

ru
ct

io
n

co
u
n
t

copy string, bi = ai

Python

Java

F03

F90

F77

C++

C

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Benchmark

Calling a function that calculates the sum of n arguments

1 2 4 8 16 32 56

102

103

104

105

n, number of in arguments (total = n+1)

in
st

ru
ct

io
n

co
u
n
t

sum float, r = ∑ ai

Python

Java

F03

F90

F77

C++

C

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Benchmark (distributed)

daxpy Benchmark

2
4

8
16

32
64

32 64 128 256 512 1024 2048 4096 8192

10

20

30

40

number of
nodes/lo-
calesblock size

ti
m

e
(s

e
co

n
d
s)

daxpy() pure Chapel, n = 220

2
4

8
16

32
64

32 64 128 256 512 1024 2048 4096 8192

10

20

30

40

number of
nodes/lo-
calesblock size

ti
m

e
(s

e
co

n
d
s)

daxpy() hybrid Chapel/BLAS, n = 220

pure Chapel hybrid Chapel/BLAS

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Summary and Future Work

Achieved interoperability between Chapel and
1 C
2 C++
3 FORTRAN 77
4 Fortran 90/95
5 Fortran 2003/2008
6 Java
7 Python

áincluding support distributed arrays

Future work

add support for Chapel as server language

use similar concepts to add support for UPC and X10

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

adrian@llnl.gov

Thank you!

http://compose-hpc.sourceforge.net (BSD licensed)

Are there any Questions?

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

http://compose-hpc.sourceforge.net
adrian@llnl.gov

Thank you!

http://compose-hpc.sourceforge.net (BSD licensed)

Are there any Questions?

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

http://compose-hpc.sourceforge.net
adrian@llnl.gov

Thank you!

http://compose-hpc.sourceforge.net (BSD licensed)

Are there any Questions?

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages

http://compose-hpc.sourceforge.net
adrian@llnl.gov

